
Naval Ocean Research and Development Activity
February 1988 Report 203

A[)-A 197 912

Implementation Issues for]Level 0
Image Processor Software within
an Application Package

DTIC

James E. Lennox
Mapping, Charting, and Geodesy Division
Ocean Science Directorate

Appiweda ~ r e distribution Is unlImited. Naval Orsan Research and Development Activity, NSTL., Mississippi 39529-5004.

r

I

Foreword

-The Mapping, Charting, and Geodesy Division has been tasked by the
- Defense Mapping Agency to develop methods for extracting bathymetry
-' information from multimode sensor data. This task requires the use of

sophisticated image processors and software packages. This paper describes
- the work done to accomplisi. interfaces to two different image processors and

a methodology for the general case of implementing image processors to a
high-level software package.

_ W. B. Moseley A. C. Esau, Captain, USN
Technical Director Commanding Officer

6

6

)- A

Executive Summary

Image processing is rapidly emerging as a field with many interesting areas
for the computer scientist. Packages are available that allow images to be
manipulated in an interactive environment by applying functions to the image.
Functions are defined as transformations from the image memory domain
to the display domain, which may permanently alter image memory values.
This paper describes minimum hardware constraints and the scope of modifica-
tions necessary to implement different image processors within the Earth
Resources Laboratory Applications Software (ELAS) environment. It also
contrasts the impact on software engineering principles related to the implemen-
tation of low-level software to support the imaging functions.

Accessicn For

NTIS2..
DT I T.k. F-]

Avl ii at i JI

Dist Spe o 1,
i A I

I--J

Acknowledgments

N This study would not have been possible without the guidance, encourage-ment, and suggestions provided by the government employees in the Pattern
Analysis Branch of the Mapping, Charting and Geodesy Division. The author
is especially indebted to Dr. Charles Walker of NORDA for his vision, patience
and scientific leadership, and NASA's Earth Resources Lab for developing
the ELAS image processing software.

-", This study was sponsored by the Oceanographer of the Navy (OP-096). The- work was funded by Program Element 63704N, coordinated by Ms. Mary
Clawson.

,'U.

'

• ii

Contents

Background 1

Theory of Operation 1

Software Scope I

* Hardware Scope 2

Software Engineering Issues 2

Conclusions 3

Appendix A: Wiring Modifications to the
Grinnell GMR 275 Image Processor 5

Appendix B: ELAS Routines Affected I I

*1

I , iii

"- - ', '/. ; ."-"; '., , ; -"'d ,. - V ' " K" " . " " '' " "- ." "

Implementation Jssues for Level 0 Image
Processor Software within an Application Package

Background necessary in subroutines RT, CURDIF, DISINT,

ELAS is an image manipulation package originally FUNMEM, and FUNM2, GWRIT2.
developed by the Earth Resources Laboratory (ERL). Modules ELAS, FMGR, and RT were originally
The package is comprised of over 600 modules. Mod- written for a 512 x 256 pixel image processor with

i ules are written in FORTRAN 4 and the host assembler fewer image and graphics planes. Changes in these
language. The Pattern Analysis Laboratory (PAL) of modules involved defining the number and size of
the Naval Ocean Research and Development Activity image planes and the number of peripherals. The driver
(NORDA) needed to secure ELAS to support research name and setup codes also had to be changed to reflect
in the determination of bathymetry from Landsat and the particular image processor in use.
Thematic Mapper data. The host machine was a VAX Modules COMD and LABL were modified to allow
11/780 with a Gould IP 8500 image processor. Subse- zoom and scroll capability and to allow hardware to
quently another version of ELAS was developed on clear image and graphics planes, which increased the
a VAX 11/750 with a Grinnell 275 image processor. speed of these operations considerably. The build table
This report discusses the implementation of both section was updated to allow color table values from
systems through the development cycle and related soft- 0 to 255 instead of the 0 to 15 range previously
ware engineering issues. It is a comparison of hard- implemented. The print color table section was
ware and low-level interfaces between the two enhanced to print values from 0 to 255 rather than 0 to
machines, and a description of that impact on the soft- 15. Finally, these modules were changed to use a
ware engineering-related issues. trackball interface for determining cursor position

rather than ASCII characters from the VTI00
keyboard.

Theory of Operation Subroutines CURDIF, DISINT, FUNMEM, and

ELAS is comprised of two types of routines: modules FUNM2 were also changed to use the trackball inter-

and callable subroutines. Modules are scheduled by the face instead of ASCII sequences from the terminal.
4. currently running process and the state is saved in a Subroutine GWRIT2 was modified to pass 4-byte

system of subfiles. Scheduling results from typing in parameters to ILBIT to allow correct subroutine

the name of a major module as the next command to linkage. Previously implemented versions of GWRIT2

process. were developed on older PDP-I I machines which used
Within the context of I/O in the ELAS image- a 16-bit word rather than the standard 32-bit word used

manipulation system, COMD is the common image on the VAX architecture. Problems in this area

* display module and LABL is the textual graphics and manifest themselves in a unique way because the VAX

vector drawing module. Each of these modules inter- architectitre stores its most significant bits in the lowest

face with a low-level, callable subroutine, CIO, that address. Thus a valid integer passed to an ILBIT
provides a common 1/O interface to the image became a zero or a large negative number in that
processor. routine's formal parameter list. The value erroneously

passed depends on the value of the integer in the call-
ing routine. This change corrected a problem encoun-
tered with writing graphics in the vertical direction.

Software Scope An additional software change was a modification
The bulk of the programming effort provided to GRDRV, the DRII1-B driver. The driver wasI

subroutines CIO, ZOOM, RDSTAT, and TRKINT, modified to provide compatibility with the VMS 4.2
which were not prcsent and which werc written in operating system. $DYNDEF was added to the driver
FORTRAN 77. This necessitated changes to modules to map in the dynamic definitions that were resident
ELAS, COMD, LABL, and FMGR. Changes were also in a different library in the VMS 3.6 software.

I'.'-.-.-.-.--,k, ..,,''' - - -.-,' ,".,L-'t,-', .,, ' .,-'.' ". .: , '-'-,'Q".," '. ¢ _, '.,,Z 5 £ '' £

0 Hardware Scope Software Engineering Issues
The existing hardware configuration did not have A variety of lessons can be learned from the imple-

sufficient lookup tables to simultaneously map an mentation of ELAS in an environment with a specific
intensity scale function and a color lookup function. image processor. The hardware and software support
This is because the only lookup tables available were offered by a vendor may dictate design issues so that
on the image function memory board and only one a clean implementation cannot be achieved. This can
function could be loaded at a time. Another set of func- be experienced with other image-processing packages
tions was available on the image processor card, but as well.
the output of these tables is routed back to the image Vendor software is a major issue in the decision to
planes, permanently altering their values. This was con- buy a particular piece of hardware. However, it may
sidered an unacceptable approach during true color be preferable to implement your own software solu-
operation because three image planes are used to hold tions because of the level of complexity that may be
the RGB spectrum and three scratch planes would also added to the software package. Complexity is deter-
b- needed. The Grinnell has only five image planes. mined by communication structures used by designers

The cleanest solution and the one implemented was of the user package and the image-processing vendor's
to change the image video driver board to a function library.
video driver board. The boards operate identically but In modern software packages, communication
the function video driver board provides another set between different independent routines is achieved by
of lookup tables to the system. There was a problem message passing schemes. These are usually global or
associated with the implementation: slot #33 did not common variables, depending on the language choice,
have read-back lines or control signals for the lookup and are true of both interactive and library callable

o" tables. This problem was solved by modifying the back subroutines. To use the vendor-supplied routines, the
plane to accommodate those signals to the slot. The message system must be established by the application

* system now provides two sets of lookup tables to the software package, which creates a structure on top of
system in a sequential path from image memory to the the user package, which obviously fails to localize the
video drivers. Appendix A documents the changes nec- functions of the image processor with relationship to
essary to reconfigure the Grinnell image processor for the other software in the user package. This method
the function video driver board. is wrong from a software engineering viewpoint for

The trackball interface provided an additional set two reasons: complexity and control of data flow.
of problems. There is a hardware-design-related prob- Complexity is increased by many factors that pre-
lem with polling the trackball interrupt registers. The sent at least two alternatives. First, the software main-
enter push-button switch must be depressed before any tainer must know in an intimate way two different user
other switches can be sensed in the interface register. packages. Thus, the programmer must know the image-
Two resistor packs were used in the trackball, -1 and processing system even if the primary interest is in the
-3 types. They both have 16 pins but the -3 has development of statistical manipulation capabilities for
8 resistors in the bridge instead of 15. This causes a the system. The other alternative is to have two dif-
timing problem when reading the trackball interrupt ferent people responsible for maintenance of the

. register, specifically the enter button. Consequently the system, neither of whom is fully skilled to handle prob-
interface loses synchronization with the system- lems in other parts of the software. The second alter-
provided QIO and a successful read does not take native impedes the speed of problem determination and
place. The problem is then complicated by the fact that may have great impact in a production environment.

* QIO thinks it got a successful read, as signified by the Also, there could be more overhead in communication
-. 10-status block word one, and the number of bytes between programmers assigned to modify or maintain

read is signified by word two. This means that the the software, including a lengthened learning curve.
system service routine $SYNCH cannot be used to indi- Good software practice demands that a module

..r cate either condition. The problem did not respond to receive information on a need-to-know basis. At the
the use of event flags since the QIO routine believes very least, write-access to a variable should be limited

* it is getting a valid read. Slowing the loop down by and regulated by a good design methodology. Adding
initiating a $WAITFR (or a do-nothing loop) eliminates a layer of variables for message-passing schemes places
the problem and does not seem to affect the use of the the entire structure in a wide-open environment. The
trackball with ELAS. One is primarily interested in the latter may cause a variety of problems, including distor-
state at that time and not in obtaining an interrupt. tion of the message if the variable's state is compro-
Slowing down the loop also precluded multiple reads mised, and in a large system it could be extremely

O in a loop as an approach with a limit on the number difficult to locate.
of reads. The delay does not adversely impact perform- Further, placing a layer on top of the applications
ance. The resolution of this problem was very time and package completely destroys portability, since all
labor intensive. modules would have to be changed to accommodate

V,

P 2

a new vendor's message-passing protocol. It must also Conclusions
be pointed out that vendor software is generally pro- A wide variety of image processors are on the market
prietary and may be sold separately and not included ranging in price from a few thousand to several hun-
with the hardware. Portability of the package to dred thousand dollars. The higher-priced systems

* another lab may be impossible or more expensive; provide hardware-implemented solutions to software-
therefore, display routines should be isolated and the related problcms such as histogram equalization or
vendor's library should be used only when the goal of warping and stretching. In order for the image-
portability is not compromised. manipulation packages to remain independent they

The image-processing system can be likened to a must continue to provide these functions in software.
* layer of abstractions from the software interface view- This lessens the risk of becoming a hardware-dependent
* point. The Gould IP8500 image processor provides a package. While not machine specific, ELAS is architec-

level 0 function IP8Q, which is a pseudo-driver on top ture specific, treating the image processor as just a
of the VAX-supplied QIO routine. The parameters frame buffer. This attitude should be relaxed to begin
passed to IP8Q include mnemonics that tell IP8Q what taking advantage of the tremendous advances in to-
function to perform on behalf of the user's applica- day's machines. However, most applications in the
tion. It may take several calls to affect a principal func- image-processing domain do not require instantaneous
tion of the image processor. The system also provides results so the lack of hardware functions does not
parameters for selecting the register and the board to significantly degrade the capacity to use the package.
modify where a polyboard or polyregister environment It is recommended that these advanced features be
exists. Thus, modification to a particular register on viewed as trade-offs in terms of throughput. Cheaper

* a particular board causes a unique function of the hardware costs allow more workstations, which may
imaging system to occur (i.e., reading an image into provide more throughput than a single machine run-
image memory). The IP8Q is performing the task of ning at the state of the art. However a minimum con-

packaging bit patterns that the machine can under- figuration should include the following:

stand and handing them to QIO. In this manner the 1. A single video output controller for each
mnemonics generate streams of bit patterns which, workstation.
packaged with other parameters, instruct the machine 2. Four 512 x 512 by eight-bits-deep image planes
to perform a particular function. Grouping these calls for each work station (three planes configured for RGB
together formulates level I calls, which are a level of and one plane for graphics).
abstraction higher than level 0 calls. 3. Two sets of lookup tables, one for functions and

The Grinnell GMR275 does not provide an abstrac- one for color mapping, available to each workstation.
tion at this level. Therefore, it was necessary to form The tables should each be 256 x 8 bits deep. The color
an array of bit patterns and pass the array to QIO. lookup table should contain three 256 x 8-bits-deep

SMnemonics for each primitive instruction on the boards tables.
are associated with a hexidecimal code representing that 4. One trackball interface with multiple interrupt
instruction's opcode. Specific instructions are formed buttons.
by logically "and-ing" or logically "or-ing" a 5. A monitor capable of displaying 512 x 512 by
parameter with an instruction mask. In this vein, eight bits deep at one time. Howeer most packages
streams of instructions are generated to effect a ma- are moving toward a 1024 x 1024 by twelve-bits-deep

4 jor component of the imaging engine. Thus, func- display.
tionality of instruction packets were made isomorphic Beyond these considerations, speed versus price
to the functions of the Gould IP8500 though individual becomes an issue. The time required to classify an
instructions were not isomorphic. image with the iterative maximum likelihood estimators

To modularize the functionality of the common 1/O grows nonlinearly. Thus an increase in the display size
interface (CIO) for the Grinnell, a strategy of localiza- will cause computational time to grow by more than
tion was adopted. Initialization during each major a factor of two.
function was performed within that stream of instruc- It may become economical to include such features
tions, which made each function of CIO completely as an array processor board or a histogram equaliza-
contained within that portion of the code rather than tion board. Image windowing can also come in handy
relying on initialization coming into the routine at the when large files are to be zoomed and scrolled.
top. This allowed an extremely crisp case structure to The standard configuration of a vendor's image
be implemented with a computed GOTO, and, together processor should be carefully scrutinized. They do not
with the use of mnemonics, made the development all provide standard hardware features. The Grinnell

quick and easy since all logic problems were isolated GMR 275 image processor is a prime example. It pro-
within a small section of code within the routine. vided only one set of lookup tables, which made a

3

backplane modification and a board purchase neces- once defined properly, they became a nonissue in the
sary. The type of output also should be checked. development cycle. Quintessentially, the most sig-
Vendors usually supply RS-170A, 30-Hz interleaved, nificant contributing factor was the complete isolation
or 60 Hz noninterleaved. Some vendors supply a of functions within the routine. There were a number
combination of RS-170 and one of the other two. of reasons. First, the area of interest was localized to

Turning to software engineering issues, portability a block of code rather than splitting it by iritializing
cannot be maintained if the vendor's package is placed at the top section. This concentrates functionality
on top of the existing applications package. This would within the block of code making comprehension much
limit the user to systems with similar hardware. It was easier. Second. because all initialization is performed
also pointed out earlier in this paper that placing the within the block, the effects of extraneous values left
vendor's package on top of the existing imaging in a register are minimized. This provides a complete
package unnecessarily adds to complexity; therefore, implementation of the functional subcomponents in
it should be avoided. Avoidance will require develop- each block of code. Understandability was partitioned
ing level 0 software by the support group for the userSapplication package. Price being equal, the software or chunked by the isolation, which implies that only
aplcto akg.Pie'en qatesfwr that subcomponent of interest need be grasped rather
with the highest level of abstraction in its level 0 calls
should be chosen, since it will minimize the develop- than an entire routine. The image processors in general

ment cycle, are faster than the VAX 11/780. Thus duplication of

Regarding the development of the common I/O the initialization, which amounted to a few additional

interface, the assignment of opcodes to mnemonic lines of code, is negligible because initialization at the

names increased readability, because they are more top requires FORTRAN conditional logic, which is
% descriptive than hexidecimal codes. Additionally, there slower than executing three or four additional inline

was less error due to misdefining the opcodes since, instructions in the image processor.

0

J."

-.N

S':-

4

0:A ZLLb A 1r "

Appendix A: Wiring Modifications to
the Grinnell GMR 275 Image Processor

The backplane wiring list can be read as follows. For example: 331PS34
Each connector has two rows which we will call bot-
tom and top. The bottom row is designated PS while 33 -- The thirty-third slot on the backplane;
the top row is designated CR.

Each row has two connectors which we will call left 1 -- The left side connector;
* and right. The left connector is designated by the P S- The bottom row side;

numeral I while the right connector is designated by
the numeral 2. 34-- The thirty-fourth pin.

-' On each connector the pins are labeled from 1 to
50 starting on the bottom row. The modifications are marked on the five pages

The first two numbers represent the slot number for which follow. The numbers 9XDB14 through 9XDBOO
' the board. are the designations for the lookup table address lines.I

0

I
C,"

P.

I'

ti.

%.. JC~p ~ --. P C

G2INNIL SYSTEMS GMR SEries 0 1 Manual
G RIN N E L-SY S T E Mk1: .ne Wireisc

3ACKPLA{E 'JIRELIST NO. 10 Z~9 1 8-e Page o (o

QA T UB'A'KIrLI,!W'

1 ,zI -, p I1H I I 01 1 IO'LI4 ?

1= 1 11 IITI (5I9

In I

12 jq Il 11) ,

I I lI I I lIII 1

Ip t I IP - ; ~ - 4 .'1-1/1

1 1 21111 I! i 1Sll!

111 II rTFFT7

iv- I~n

11 11 '44-

I co! I It I I I ic)

Uj1 L 1!7 1 1 1 1 1 1 1IzI! 1 14 0

II

LI

'2 1 11A LI'L I

2-L47j

T~ 7r n -,

4%

.2 T1. G T~ Series 0 &M Manual
GC-INNELL SYSTEMS 6 .- x ackplane Wirelist

BAC:42!LATE ;RELTST NO. 37___ __ __ r___ Page -aoL f01:

ZI I 1I' 5 1 1 I P 1 Iq

Y,~~~ FL31 !QIDLhI

-I- -3 [- 1 -5 1 i

JIILL______11 1 MI___1___I I I I I I

ITR 1117 11IIP 5 !7 53 0!R1II

2 12___ IP CZ 3, JqI I i1;

2 331 CQjIi I 3'

2, 2 'P- 2-I'~ o p, 1 -0- -i2

8.rICJ3

i1'ALhLJ2 I

-Nplvq -W %A I. - wn r - w - V WV W .WWWVWMIww V'S L 'ww% L WW L

BACKPH±E WILI NO±094-±ae ; f_
I II pI3.± 0-p1321 , -

10 17 ;0 1 , 11 I s I 1 1*h7

10iqti A + 4z JR 1 I

104_ ii /1 (lII IIIfiq

1 17 i'Z 'L'Io I-p 1,
!I 31I -P5 !,11L 11 I P 1) ~ 7 1 ± 6111')117

17 Tq1 1 1 17PQ I I I 1 _17

1171 12131________ -117

____2-__-1_P__17- E5 2-1-i1-F - I P* 214,'
I Z 7 .1 tP ii 51 -Z 7 11 R-1

21 I 1631?2
_______________3_3__-L _________ -i.3

7
II

I- - F - -7 1

%

GINNELL SYSTEMS 16 - 0 .r 0 Manual
GRINEL YSEM .6- Backplane Wirelisc

BACKTULVE WIRELIST N oo _ ' Page a of jL

x) tiiix)I)-7

LA IQ I0 I-

I I1 I ' s _- r

II I<I 2.riL5 102lL 147

m'/1

_61 2iL. c) ilni34

1 7 LC4 (P 7 ,11 1 17

I Iq
_L - 0 c1I1p

'jq I I I
1"-Q 1-

.~'"~ 4 t I' I t

, 1 17

1 (--- _ __1(0fil

s-v. z ,t4j

I T0 1
1 ,-

IP" 1 (17

0- R 5 I,_.

" :
"::: ~~~ ~~ If-- TFT __

-4:7

18:
.. ...FN-

'diall"

GINNELL~~i SYSEM Backplane wirelist

BACKPLXVE WIRELlST NO. 1029 18- Page Lr Of -L

0111 0p - 4 0-711ISa -

0 I+ 0 P 7p t p 5

I.q

It 1 I 111
It II 1-A 71W i

I1a I~ I q
Ij2 8

' JO I II I.I

*21 4jo LI Ii 0 17 .

- R -34

E

t= z 1CJ3 c 2J

II ___1

t-i-iiL.LL
t. I i

K7 r 2 - -I I

Appendix B: ELAS Routines Affected

13

OPYC-
CIMHO150008000©IMVOO5501OOOO©ISTFO1©IS204CICOOO©ITOIOOO©IOP

C
C CIO.FOR FOR THE GRINNELL IMAGE DISPLAY

* C
C CALL CIO (LU, TOP, NC, LINE, NBTS, BUFF, L)
C
C LU = LOGICAL UNIT (NOT USED)
C
C lOP = COMTAL OPERATION CODE

* C = 1 FOR IMAGE READ

C = 2 FOR IMAGE WRITE

C = 3 FOR GRAPHIC READ
C = 4 FOR GRAPHIC WRITE

C = 5 FOR FUNCTION READ
C = 6 FOR FUNCTION WRITE

* C = 7 FOR COLOR TABLE READ

C = 8 FOR COLOR TABLE WRITE

C = 9 FOR TARGET READ (DISABLED)
C = 10 FOR TARGET WRITE
C
C NC = COMPONENT NUMBER

C = IMAGE / GRAPHIC NUMBER I lOP IS 1,2,3 OR 4
C ALSO IF NC IS NEGATIVE, THE SCROLL REGISTER WILL BE

C UPDATED AFTER THE OPERATION TO ALLOW THE IMAGE TO BE

C ROLLED.
C = UNUSED FOR TOP GREATER THAN 4

C
C LINE = LINE NUMBER FOR IMAGE OR GRAHIC READ OR WRITE.
C THIS NUMBER IS USED AS ELAS EXPECTS. I.E. THE

C TOP LINE IS LINE 0.

C
C NBTS = NUMBER OF BYTES (NOT USED)
C
C BUFF = DATA ARRAY
C
C L = STATUS ; NORMALLY EQUAL TO NBTS ; NEGATIVE ON ERROR

C
SUBROUTINE CIO (LU, TOP, NC, LINE, NBTS, BUFF, L)
IMPLICIT INTEGER*4 (A - Z)
INTEGER*2 LN, ELM

INTEGER*2 GR, IMG, MASK, COL, BUFF(512), B(600), IOSB(4),
•* WID, LSM, WGD, WAC, LWM, LUM,
• ERS, ERL, SLU, EGW, LER, LEA,

• LDC, NOP, LPR, LPRI, LPR2, LPR3,
• LPR4, LPR5, SPD, LPA, LPD, RPD,

S(* BIT15

C
C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.

C
PARAMETER
*(WID'0000'X, LSM='1000'X, WGD-'2000'X,

= * WAC-'2400'X, LWM-'2800'X, LUM-'2COO'X,
* ERS='3000'X, ERL-'3400'X, SLU='3800'X,

15

*EGW-'3C00'X, LF.R='4000'X, LEA-'4800'X,
*1,EB='5000'X, LEC-'5800'X, LLR-'6000'X,
*LLA-'6800'X, LLB='7000'X, LLC-'7800'X,
*LDC-'8000'X, NOP-'9000'X, LPR-'COOO'X,
*LPRI='C200'X, LPR2-'C400'X, LPR3-'C600'X,
* LPR4-'C800'X, SPD='AOOO'X, LPA-'B000'X,
*LPD-'DOOO'X, RPD-'EOO()'X,

C
C BIT MASKS
C

*B1T15-'8000'X)

C
C CB IS AN ARRAY USED FOR CFSUB CALLS
C

INTEGER*4 CB(4)
C
C FIRST IS USED TO TELL CIO WHEN IT IS FIRST CALLED.
C

DATA FIRST /0/
DATA CB / 4HIFCT,O,O,O/

* DATA ICH/l/
EXTERNAL 10$_READLBLK

4 EXTERNAL 10$_WRITELRLK

c IF THIS IS THE FIRSTr TIME INTO CIO, OPEN THE GRINNEL
C

IF (FIRST.EQ.O) THEN
L =SYS$ASSIGN ('GRA:',GRLI,,)
IF CL.NE.1) THEN

WRITE (6,1) L
IFORMAT(UNABLE TO ASSIGN THE GRINNELL; STATUS =',Z8)

ELSE
FIRST - 1

A END IF

END IF
C
c

GO TO (100, 200, 300, 400, 500, 600, 700, 800, 900,
* 1000, 1100, 1200, 1300), lOP

C

C READ IMAGE
C

100 CONTINUE
LN - 511 - LINE !REVERSE ORDER To MATCH ELAS
1MG - ABS (NC)
1MG = 2 ** (1MG - 1)
B(l) = IOR CLWM, '0020'X)

yB(2) -IOR (UM, '0002'X)
B(3) - TOR C ILA, LN)
B(4) - TOR CLEA, '0001'X)
B(5) - TOR (LEB, '0001'X)
B(6) - IOR CLI)C, 1MG)

16

B(7) - IOR (LSM, 'OOFF'X)

B(8) = IOR (SPD, '0100'X)
B(9) = TOR (RPD, 'OOO'X)
STAT = SYS$QIOW (, %VAL(GR_LU), 10$_WRITELBLK

* IOSB,,,B, %VAL(18),,,,)

STAT - SYS$QIOW (, %VAL(GRLU),1O$_READLBLK,

* IOSB,,,B, %VAL (1024),,,,)
CALL CIOPCK (B, BUFF, 512)
L - 512

RETURN
C
C WRITE IMAGE

C
200 CONTINUE

LN = 511 - LINE ! REVERSE ORDER TO MATCH ELAS

IMG = ABS (NC)

O 1MG = 2 ** (IMG - 1)
B() = IOR (LWM, 'OOOO'X)
B(2) = TOR (LUM, '0002'X

B(3) = TOR (LLA, LN)
B(4) = IOR (LEA, '0000'X)
B(5) = [OR (LEB, '01'X)
B(6) = OR (LDC, OG)
B(7) = TOR (LSM, 'OOFF'X)
B(8) = IOR (SPD, '0200'X)
B(9) = IOR (LPR, '0200'X)
DO I = 1, 512

B(1+9) = BUFF(I)
lEND DO

NTW = 512 + 18

STAT SYS$QIOW (, %VAL(GR_LU), 10$WRTTELBLK
• IOSB,,,B,%VAL(NTW),,,,)

L = 512
RETURN

*C
C READ GRAPHICS
C

300 CONTINUE
CR = ABS (NC) / 2
CR = 2**(GR + 8)
LN = 511 - LINE ' REVERSE ORDER TO MATCH ELAS

B(M) TOR (SPD, 'O00]'X)
B(2) = TOR LPRI, 'OOCO'X)
B(3) = TOR (LPR2, 'OOAO'X)
B(4) = IOR C LPR3, 'O010'X)
B(S) = TOR (LDC, R)
B(6) = IOR (LSM, 'OFOO'X)
B(7) = [OR L LEA, 'OOO'X)
8(8) IOR C LLA, LN)
B(9) = TOR (LEB, 'OOO1'X)
B'0S) = TOR (LLB, 'OO00'X)

*" B(ll) = [OR (LUM, '0002'X)
B(12) -IOR (LWM, '0840'X)
B(3) = [OR (SPD, 'O100'X)

C- 17

B014) I OR (RPD, 'OCOO'X)
STAT =SYS$QIOW (, %VAL(GRLU), 10$_WRITELBLK

* ~IOSB,,,B, %VAL(28),,
-~ STAT =SYS$QIOW (, %VAL(GRLU),10$ READLBLK,

* IOSB,,, B, %VAL (512),,
CALL CIOGPK (B, BUFF, 512)
CALL SWL (BUFF, 64)
L =64

RETURN
C
C WRITE GRAPHICS
C

400 CONTINUE
CALL SWL (BUFF, 64)

*GR = ABS (NC)!/ 2
CR = 2**(GR + 8)
LN = 511 - LINE !REVERSE ORDER TO MATCH ELAS
B(1) = TOR (SPD, '0001'X)
B(2) = IOR (LPR1,'OOCF'X)
B(3) = IOR (LPR2,'OOAF'X)
B(4) = IOR (LPR3,'OO1F'X)
B(5) = IOR (LDC, GR)
B(6) = fOR (LSM, 'OFOO'X)

*B(7) = IOR (LEA, '0000'X)

-B(8) = IOR (LLA, LN)
B(9) = fOR (LEB, '0008'X)
B01O) = IOR (LLB, '0000'X)
BOO1 = IOR (bUM, '0002'X)
B(12) = IOR (LWM, '0840'X)
B013) = IOR (SPD, '0200'X)
B(14) = IOR (LPR, '0820'X)
DO 1= 1, 32

B(i+14) -BUFF(I
END DO
NTW = 64 + 14
NTW =NTW * 2

* STAT = SYS$QIOW (,%VAL(GRLU),10$_WRITELBLK
IOSB,...B, %VAL (NTW),,

CALL SWL(BUFF,64)

L =64
RETURN

* C
C READ FUNCTION
C SINCE THE GRINNELL HAS 3 LOOKUP TABLES WHICH HAVE BEEN

C IMPLEMENTED TO SERVE AS BOTH FUNCTION & COLOR TABLE,
C THE READ FUNCTION IS CODED TO READ FROM A SUBFILE.
C

*500 CONTINUE
* CB(3 - I

CB(4) = 128
CALL CFSUB (5, CB, BUFF)
L =512

RETURN
* C

18

0 10I11,1 O&MI11 i

~~7WWW ~~ Wmn RITE FUNCTION~wW n,

'CC

600 CONTINUE
CB(3 - I
CB(4) - 128
CALL CFSUB (6, CB, BUFF)
B(1) - IOR (SPD, '0002'X)
B(2) = IOR CLPA, 'OCOO'X)
DO I1-1, 256

B(I+2) = IOR (LPD, BUFF(I))
END DO
NTW -512 + 4
STAT = SYS$QIOW (, %VAL(GRLU),10$_WRITELBLK

* IOSB ...B, %VAL(NTW),
L =512

RETURN
C
C READ COLOR TABLE
C THIS OPTION READS FROM A SUBFILE RATHER THAN THE GRINNELL.
C

700 CONTINUE
CB(3) - 129
CB(4) = 256
CALL CFSUB (5, CB, BUFF)
L =512

RETURN
C
C WRITE COLOR TABLE

800 CONTINUE
CB(3) = 129
CB(4) = 256
CALL CFSUB (6, CB, BUFF)
B(1) = IOR CSPD, '0001'X)

* DO ICOL =1, 3
MASK =(ICOL -2 8001X
IF (MASK.LT.O)MASK = 400'X
B(2) = IOR (LPA, MASK)
MASK = 15 * 16**(ICOL I
DIV = 16**(ICOL - I
DO LOC 1, 256

COL IAND (BUFF CLOC),MASK)
COL =COL / DIV * 17
B (LOC + 2)=IOR C LPD, COL)

END DO
NTW =512 + 4
STAT SYS$QIOW (,%VAL(CRLU),IO$_WRITELBLK,

* ~IOSB,...B, %VAL(NTW),,
END DO
L - 512

RETURN
C
C READ TARGET ONLY ONE CURSOR OF FOUR ACTIVATED
C

19

900 CONTINUE

B(1) = IOR (SPD, '0080'X)
B(2) = IOR (LPR, '0011'X
B(3) = IOR (LPA, '0000'X)
B(4) = IOR (RPD, '000'X)
STAT = SYS$QIOW (, %VAL(GR LU),IO$_WRITELBLK,

* IOSB ,.B, %VAL(8),.,)
C
C

STAT = SYS$QIOW (%VAL(GR LU),IO$ READLBLK,
* IOSB,,,B, %VAL(4),,,,)

BUFF(1) = B(1) .AND. 1023

BUFF(2) = 512 - (B(2) .AND. 1023)

RETURN

C WRITE TARGET
C

1000 CONTINUE
LN = 512 - BUFF (2)
ELM = BUFF(1)
ELM = IOR (ELM, '0800'X)
LN = IOR (LN, '0800'X)
PRINT *,' X AND Y ',ELM,' ',LN

* B(1) = IOR (SPD, '0080'X)
B(2) = IOR (LPR, '0011'X)
B(3) = IOR (LPA, '0000'X)
B(4) = IOR (LPD, ELM)
B(5) = IOR (LPD, LN)
STAT = SYS$QIOW (, %VAL(GRLU),IO$_WRITELBLK,

* IOSB,,,B, %VAL(10),,,,)
RETURN

~C
.V C ERASE IMAGE NO LONGER USED SUBROUTINE CLRGI USED
,V C LEFT IN CASE SOMEONE HAS OLDER ROUTINES WHICH DO NOT CALL CLRGI

C
1100 CONTINUE

IMG - ABS(NC)
IMG = 2**(IMG - 1)
PRINT *,' IMG = ',IMG

B(1) = IOR (LDC, IMG)
B(2) = IOR (LSM, 'OOOF'X)

* B(3) = ERS
STAT = SYS$QIOW (%VAL(GR LU),IO$_WRITELBLK,

;q~q * IOSB, ,B, %VAL(6),,,,)
RETURN

C
C ERASE GRAPHIC NO LONGER USED SUBROUTINE CLRGI USED

* C LEFT IN CASE SOMEONE HAS OLDER ROUTINES WHICH DO NOT CALL CLRGI

C
1200 CONTINUE

GR = ABS(NC) / 2
GR = 2**(GR + 8)
B(1) = IOR(LDC, GR)

B(2) = IOR (LSM, 'OFOO'X)

20

B(3) = ERS
STAT - SYS$QIOW (,%VAL(CRLU),10$_WRITELBLK,

* ~IOSB ...B, %VAL(6),,
RETURN

C
C ANY OTHER VALUE FOR TOP IS BAD
C
1300 CONTINUE

WRITE(6,*) ' ERROR MESSAGE TOP OUT OF RANGE'

RETU RN

C END
C
C
C CIOPCK IS A SUBROUTINE TO PACK 16 BIT DATA BACK INTO BYTES
C

SUBROUTINE CIOPCK (B, BUFF, NUM)
INTEGER*2 B(512) ,T2
BYTE T1(2), BUFF(512)
EQUIVALENCE (T2, Ti
DO I = 1, NUM

T2 - B(I)
IF (T2.GT.255) THEN

T2 - IAND (T2, 255)+ I
END IF
BUFF(I) = TICI)

END DO
RETURN
END

C
C CIOGPK IS A SUBROUTINE TO PACK I BIT OF EACH BYTE OF AN ARRAY
C INTO ITS BIT POSITION IN ANOTHER ARRAY. THIS IS USED TO
C CONVERT THE RESULT OF A GRAPHIC READ BACK TO THE ELAS FORMAT.
C

SUBROUTINE CIOGPK (B, BUFF, NUM)
BYTE B(512), T1(2)
INTEGER*2 T2, BUFF(32), M4ASK(16)
EQUIVALENCE (T2,T1)
DATA MASK/'8000'X,'4000'X,'2000'X,'1000'X,
* '800'X, '400'X, '200'X, '100'X,
* '8O'X,'40'X, '20'X,'1O'X,8,4,2,l/

C *'8000'X,'4000'X,'2000'X,'1000'X,

C *'800'X, '400'X, '200'X, '100'X/
LOC 1
LOCO =1

DO I1 1, NUM, 16
T2 -0

cl DO J -1, 16
IF CB(LOC).NE.O T2 =IOR (T2, MASK(J))
LOC =LOC + 1

END DO
BUFF(LOCO) - T2
LOCO - LOCO + I

END DO
RETURN
END

21

-- - Copy§..

SUBROUTINE RDSTAT(XLOC,YLOC,ENTER,FUNCI ,FUNC2)
IMPLICIT INTEGER*2 (A - Z)
INTEGER*4 SYS$ASSTGN, SYS$QIOW, STAT
EXTERNAL 10$_-WRITELBLK, 10$_READLBLK
INTECER*2 GR, 1MG, MASK, C70b, BUFF(512), B(600), IOSB(4),

XLOC, YLOC,
*W:D, LSM, WGD, WAC, LWM, LUM,
*ERS, ERL, SLU, EGW, LER, LEA,
*LDC, NOP, LPR, LPRI, LPR2, LPR3,
*SPD, LPA, LPD, RPD, BITlO, BITlI,
* BIT15

p C

C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.

PARAMETER
*(WID='OOOO'X, LSM='1000'X, WGD='2000'X,
*WAC="2400'X, LWM'='2800'X, LUM='2C00'X,

T -IRS-'3000'X, ERL='3400'X, SLU='3800'X,
*EGW-'3C00'X, LER-'L4OOO'X, LEA='4800'X,
*LEB-'5000'X, LEC='5800'X, LLR='6000'X,
*LLA-'6800'X, LLB='7000'X, LLC='7800'X,

40 * LDC-'8000'X, NOP='9000'X, LPR='COOO'X,
" LPR1-'C200'X, LPR2='C400'X, LPR3='C600'X,
" SPD-'AOOO'X, LPA='BOOO'X, LPD='DOOO'X, RPD='EOOO'X,

C
C BIT MASKS
C

*BIT1O='0400'X, BITIl='08O0'X, BITI5='8000'X)
C

STAT =SYS$ASSIGN ('GRAO:',GRLU,,)
BM1 = IOR (SPD, '0080'X)
B(2) =IOR (LPA, '0000'X)
B(3) = IOR (RPD, 'O0O'X)
STAT = SYS$QIOW(,%VAL(GRLU),IO$_WRITELBLK,

* IOSB ...B,%VAL(6),,,,)
-S c

ENTER= 0
FUNCi = 0
FUNC2 = 0

*B(1) = '0000'X
B(2) = '0000'X
DO WHILE (ENTER .EQ. 0)

STAT = SYS$QIOW(,%VAL(GRLU),IO$_READLBLK,
* * IOSB..,B%VAT,(1),)

WRITE (5,10) B(1)
*10 FORMAT(4X,Z4,/)

PRINT *,' IOSB = ',IOSB(1),' ',IOSB(2)
IF ((B(I) .AND. BIT15) .EQ. 0)THEN

ENTER = 0
ELSE

ENTER = 1
* EM) IF

22

END DO

XLOC - B(1)
*YLOC = B(2)

IF ((XLOC .AND. BITO) .EQ. 0) THEN

. FUNCI = 0
ELSE

FUNCI =1

END IF
IF ((XLOC .AND. BITIl) .EQ. 0) THEN

FUNC2 = 0
ELSE

FUNC2 = I

END IF

XLOC = XLOC .AND. 1023

YLOC = YLOC .AND. 1023

PRINT *,' Fl = ',FUNCI,' F2 = ',FUNC2,' ENT = ',ENTER

RETURN

END

w

p

IC

23

D~

eDIMHO1I5000800001MV0055O l0OOC'ISTFOIC)IS2O4CICOOOCITO lOO0OIOP

SUBROUTINE TRKINT (ENTER)
C
C POLLS TRACK BALL INTERFACE TO DETERMINE IF TI'E ENTER BUTTON
C HAS BEEN PUSHED. THIS REPLACES DISINT FOR THAT FUNCTION
C

IMPLICIT INTEGER*2 (A - Z)
INTEGER*4 ENTER
EXTERNAL 10$_-WRITELBLK,IO$R-ADLBLK
INTEGER*2 CR, 1MG, MASK, COL, BUFF(512), B(600), IOSB(4),

* XLOC, YLOC,
*WID, LSM, WGD, WAC, LWM, LUN,
*ERS, ERL, SLU, EGW, LER, LEA,
*LDC, NOP, LPR, LPRl, LPR2, LPR3,
*SPD, LPA, LPD, RPD, BITIO, BITil,
* BIT15

C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.

P ARAMEF T E R
*(WID='O000'X, LSM='1000'X, WGD='2000'X,
* WAC='2400'X, LWM='2OO'X, LTJM='2CO0'X,
* ERS='3000'X, ERL='3400'X, SLU='3800'X,
* EGW='3C00'X, LER='4000'X, LEA='4800'X,
* LEB='5000'X, LEC='5800'X, LLR='6000'X,
* LLA='6800'X, LLB='7000'X, LLC='7800'X,
* LDC='8000'X, NOP='9000'X, LPR='C000'X,
* LPR1='C200'X, LPR2='C400O'X, LPR3='C600'X,
* SPD='AOOO'X, LPA='BOOO'X, LPD='DOOO'X, RPD='EOOO'X,

- C
a,.C BIT M4ASKS

*BIT10='0400'X, BITll='0800'X, BIT15-'80OO'X)

STAT = SYS$ASSIGN ('GRAO:',PRLU,,)
*BM1 = LOR (SPD, '0080'X)

B(2) = IOR (LPA, '0000'X)
B(3) = IOR (LPR, '0011'X)
BM4 = TOR (RPD, '0000'X)
STAT = SYSSQIOW(,%VAL(GR_-LU),IO$_WRITELBLK,

* * IOSB.. B,%VAL(8),l,,)
C

ENTER = 0
C
C DO WHILE ((ENTER .EQ. 0) -AND. (JUNK .LTi. 500))

C
STAT = Sr'S$QIOW(,%VAL(GRLU),[O$READLBLK,

* IOSB,, ,B,%VAL(lT 16),,,
C

WRITE (5,10) BM1
10 FORMAT (4x,Z4,I)

IF ((BO1) .AND. BITM5 .EQ. 0)THEN
* ENTER = 0

* 24

ELSE
ENTER = I

END IF
c

*C END DO
C

PRINT *,'ENTER =',ENTER

RETURN
END

S2

CII{HOl 5OOO8OOO0IMVOO55O 1OOO0ClSTF0l0IS2O4clICOOOeITOIOOOCIOP
SUBROUTINE ZOOM
IMPLICIT INTEGER*2 (A - Z)
INTEGER*4 SYS$ASSIGN,SYS$QIOW,STAT
EXTERNAL 10$_-READLBLK, 10$_WRITELBLK
INTEGER*2 CR, 1MG, MASK, COL, BUFF(512), B(600), IOSB(4),

* XLOC, YLOC,
* WID, LSM, WGD, WAG, LWM, LUM,
* ERS, ERL, SLU, EGW, LER, LEA,
* LDC, NOP, LPR, LPR1, LPR2, LPR3,
* SPD, LPA, LPD, RPD, BITLO, BITIL,
* BIT15

C
C THE FOLLOWING PARAMETERS DEFINE THE GRINNEL OPCODES SYMBOLICLY.
C

PARAMETER
*(WID=lOO0o'X, LSM='IOOO'X, WGD='2000'X,
* WAC-'2400'X, LWM='2800'X, LUM='2C00'X,
* ERS-'3000'X, ERL='3400'X, SLU='3800'X,
* EGW='3C00'X, LER='4000'X, LEA='4800'X,
* LEB='5000'X, LEC='5800'X, LLR='6000'X,
* LLA-'6800'X, LLB='7000'X, LLC='7800'X,
* LDC='8000'X, NOP='9000'X, LPR='COOO'X,
* LPR1='C200'X, LPR2='G400'X, LPR3='C600'X,
* SPD='AOOO'X, LPA='BOOO'X, LPD='DOOOIX, RPD='EOOO'X)

STAT = SYS$ASSIGN ('GRAO:',GRLU,,)
C

PRINT ,'TURN FUN A SWITCH OFF'
PRINT '

PRINT '

PRINT ,'DEPRESS ENTER TO ZOOM :

PRINT I

PRINT ,'ZOOM VALUES SEQUENCE THRU MODULO (1, 2, 4, 8)
PRINT '

* PRINT ,

PRINT ,'TURN FUN A ON THEN DEPRESS ENTER TO QUIT'
PRINT '

PRINT ,

PRINT 'b'MOVE TRACK THEN DEPRESS ENTER TO SCROLL'
PRINT ,

PRINT '

C
X =0
Y=O
ENTER = 0

*FUNC = 0
FUNC2 = 0

CALL RDSTAT(X,Y,ENTER,FUNCI ,FUNC2)
FNC2HD = 0

*CHAN=O

26

Io

-.-'- nan-nS - - -n -~W -n -r -5 -a - ,ain~ -W -n -r -r -i -n -n -n -- SiSi ni

DO WHILE (FUN1 .EQ. 0)
C

ZMVAL -ZMVAL + ENTER

4v ZMVAL -MOD (zmvAL, 4)
SZOOMV -ZMVAL

B(l) =IOR (SPD, O0100'X)
B(2) -TOR (LPR, 'OOOF'X)
B(3) =TOR (SPD, 10008'X)
ZOOMV -TOR (ZOOMv, '004C'X)
B(4) = TOR (LPR, ZOOMV)
B(5) = IOR (LPA, '0000'X)
B(6) = IOR (LPD, x)

B(7) = TOR (LPD, Y)
*INSTCT = 14

C
IF (FUNC2 .NE. FNC2HD) THEN

CHAN = CHAN + I
CHAN = MOD (CHAN, 3)
FGHAN =IOR (2**CHAN, 'OFOO'X)
FNC2HD FUNC2
B(8) = IOR (LDC, FCHAN)
INSTCT =INSTCT + 2

END IF
C
C STAT =SYS$QIOW(,%VAL(GRLrJ),IO$_WRITELBLK,

C *IOSB ...B,%VAL(INSTCT)
C

* CALL RDSTAT(X,Y,ENTER,FUNCI,FUNC2)
C

END DO
C
C CENTER IMAGE ON SCREEN WITH ZOOM VALUE OF I
C

X = 255
Y = 255
B(I) = IOR (SPD, '0100'X)
B(2) = IOR (LPR, 'OOOF'X)
B(3) = IOR CSPD, '0008'X)

*B(4) = IOR (LPR, '004C'X)
B(5) -IOR CLPA, '0000'X)

*B(6) = IOR (LPD, x)
B(7) = IOR CLPD, x'
INSTCT = 14

* C

STAT =SYS$QIOW(,%VAL(GRLU),IO$_WRITELBLK,

* IOSB .. ,B,%VAL(INSTCT),....
RETU RN
END

C 27

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified None

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b SApproved for public release; distribution is2b DECLASSIFICATION/DOWNGRADING SCHEDULE ulmtd
_ , unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NORDA Report 203 NORDA Report 203

6 NAME OF PERFORMING ORGANIZATION 7a. NAME OF MONITORING ORGANIZATION

Naval Ocean Research and Development Activity Naval Ocean Research and Development Activity

6 ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

* Ocean Science Directorate Ocean Science Directorate
NSTL, Mississippi 39529-5004 NSTL, Mississippi 39529-5004

8a. NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9. PpCJREMENT INSTRUMENI IDENTIFICATION NUMBER

Naval Ocean Research and (If applicable)

Development Activity
lS 8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NOS

Ocean Science Directorate PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO

NSTL, Mississippi 39529-5004ELMNNONO
63704N R1987 300 23508B

11 TITLE tinclude Se-rity Classification)

Implementation Issues for Level 0 Image Processor Software within an Application Package
1:) PERSONAL AUTHOR(S)

41111 James E. Lennox
13a TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yr., Mo., Day) 15 PAGE COUNT

Final From - To February 1988 30
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

*6 FIELD GROUP SUB. GR. . image processing, software, hardware, ELAS, ERL, PAL,
._ _ _ _ _ _ _ _ Landsat, Thematic Mapper data, V.AX-44780, VAX 141750

modules, callable subroutines, COMD,-pixel ..

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

image processing is rapidly emerging as a field with many interesting areas for the computer scien-
tist. Packages are available that allow images to be manipulated in an interactive environment by applying
functions to the image. Functions are defined as transformations from the image memory domain to
the display domain, which may permanently alter image memory values. This paper describes minimum
hardware constraints and the scope of modifications necessary to implement different image processors

. within the Earth Resources Laboratory Applications Software (ELAS) software environment. It also con-
trasts the impact on software engineering principles related to the implementation of low-level soft-
ware to support the imaging functions. r ', -

"'

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 7 SAME AS RPT N DTIC USERS E Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Area Code) 22c OFFICE SYMBOL

James E. Lennox (601) 688-4633 Code 351

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE UNCLASSIFIED
C, SECURITY CLASSIFICATION OF THIS PAGE

. " -

